Dual Number Subalgebras mapped to Digital Signal Processing Structures

Daniel J. Alfsmann, and Heinz G. Göckler

Digital Signal Processing Group (DISPO), Ruhr-Universität Bochum, Germany

18 December 2008
1 Introduction
 Application example
 Motivation

2 Generalised complex numbers

3 Generalised complex digital systems
 Mapping to DSP structures
 Impact of zero divisors
 Processing of real signals

4 Summary
Higher-dimensional algebras in Digital Signal Processing

- Complex numbers in DSP: Essential
- Extension of concept (more than one imaginary component)?
- Sangwine et al.: Hypercomplex colour image processing
- Schütte 1990: “Reduced biquaternions” (RB) in DSP
 - RB-valued transfer functions
 - Efficient RB-valued multiplication and convolution
- Petrovsky, Parfieniuk, et al. 1999:
 - Novel (paraunitary) filter banks based on quaternions
- Extended concept: Filter banks based on RBs
Example algebra: Reduced biquaternions

- Reduced biquaternions: 4-dimensional commutative algebra

\[a = a_1 + a_2 i + a_3 j + a_4 k, \quad a_1, a_2, a_3, a_4 \in \mathbb{R}, \]

\[i^2 = j^2 = -1, \quad k^2 = +1, \quad ij = ji = k, \quad \ldots \]

- RB multiplication: 16 real multiplications and 12 real additions

- RBs comprise divisors of zero:
 Not every \(a \) is invertible, product \(ab \) may yield zero even if \(a \) and \(b \) are not zero, e.g.

\[(1 + k)(1 - k) = 1 - k^2 = 1 - 1 = 0 \]

- Applying a special decomposition, the computational load for multiplication and convolution can be reduced to the half
Application: 4-channel analysis filter bank based on RBs

- Cascade of RB-valued first order allpasses
- Arbitrary individual channel bandwidths
- Paraunitary (perfect reconstruction)
- Low expenditure, group delay
Motivation: Raised questions

1. Example application is based on algebra exhibiting zero divisors
 - What does this mean for digital LTI systems?
2. Example application is processing real-valued signals
 - How can this be efficient?
Relation to modern mathematics

• Benjamin Peirce 1870:
 • Idempotents (divisors of zero): $e^2 = e$
 • (Right) Peirce decomposition: Algebra element a represented as direct sum:
 \[a = eb_1 + (1 - e)b_2, \quad a \in A, \quad b_1, b_2 \in B \]

• Subalgebras: $B \subset A$
• Nilpotents (divisors of zero): $n^p = 0, \ p > 1$

• Maclagan Wedderburn 1908:
 • Semi-simple algebra: Decomposable with Peirce decomposition
 • Radical N: Containing all nilpotent subalgebras
 • Any (associative) algebra is the sum of its radical N and a semi-simple algebra.
Choosing comprehensible algebra examples

- Should exhibit higher-dimensional algebras’ properties in question
- Should be as simple as possible (low dimension)
- Two examples with dimension 2 (!):
 - Double numbers \(a = a' + a'' \omega, \quad \omega^2 = 1 \)
 - Dual numbers \(a = a' + a'' \varepsilon, \quad \varepsilon^2 = 0 \)
- Furthermore, they frequently emerge as subalgebras
Generalised complex numbers

- Three alternatives for imaginary unit γ:

\[a = a' + a'' \gamma, \quad a', a'' \in \mathbb{R} \]

- $\gamma^2 = i^2 = -1$: Common complex numbers, division algebra
- $\gamma^2 = \omega^2 = +1$: Double numbers, comprising non-trivial idempotents
- $\gamma^2 = \varepsilon^2 = 0$: Dual numbers, comprising non-trivial nilpotents

- Multiplication (commutative):

\[ab = a' a'' + (a' b'' + a'' b') \gamma + a'' b'' \gamma^2 \]

- Conjugate: $\bar{a} = a' - a'' \gamma$

- Semi-norm:

\[N(a) = a \bar{a} = a'^2 - a''^2 \gamma^2 \in \mathbb{R} \]

- Zero divisors: $N(a) = 0$ except $a = 0$
Zero divisors of generalised complex numbers

<table>
<thead>
<tr>
<th></th>
<th>Complex (i^2 = -1)</th>
<th>Double (\omega^2 = 1)</th>
<th>Dual (\varepsilon^2 = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idempotents</td>
<td>(e = 0, 1)</td>
<td>(e = 0, \frac{1+\omega}{2}, \frac{1-\omega}{2}, 1)</td>
<td>(e = 0, 1)</td>
</tr>
<tr>
<td>Nilpotents</td>
<td>(n = 0)</td>
<td>(n = 0)</td>
<td>(n = a''\varepsilon)</td>
</tr>
<tr>
<td>Semi-norm</td>
<td>(N(a) = a'^2 + a''^2)</td>
<td>(N(a) = a'^2 - a''^2)</td>
<td>(N(a) = a'^2)</td>
</tr>
</tbody>
</table>

e.g. \(\left(\frac{1+\omega}{2}\right)^2 = \frac{1+2\omega+\omega^2}{4} = \frac{2+2\omega}{4} = \frac{1+\omega}{2}\)
Double numbers: Peirce decomposition

- Peirce decomposition based on double numbers’ idempotents
 \[a = \tilde{a}_1 \frac{1 + \omega}{2} + \tilde{a}_2 \frac{1 - \omega}{2}, \quad \tilde{a}_1, \tilde{a}_2 \in \mathbb{R} \]

- Orthogonal components:
 \[\tilde{a}_1 = a' + a'', \quad \tilde{a}_2 = a' - a'' \]

- All operations can be performed component-wise, for instance multiplication and convolution
DSP structures resulting from subalgebras

- Structures determined by underlying algebra’s multiplication:
 - Generalised complex LTI system
 - Common complex LTI system
 - Double LTI system
 - Dual LTI system

- Impulse response: $h(k) = h'(k) + h''(k)\gamma$
- Generalised z-Transform:
 \[H(z) = \mathcal{Z}\{h(k)\} = \sum_{k=-\infty}^{\infty} h'(k)z^{-k} + \sum_{k=-\infty}^{\infty} h''(k)z^{-k}\gamma \]
- Convolution theorem valid for all cases:
 \[H(z)X(z) = \mathcal{Z}\{h(k) * x(k)\} \]
DSP structures resulting from subalgebras

- Structures determined by underlying algebra’s multiplication:
 - Generalised complex LTI system
 - Common complex LTI system
 - Double LTI system
 - Dual LTI system

- Impulse response: \(h(k) = h'(k) + h''(k) \gamma \)
- Generalised z-Transform:
 \[
 H(z) = \mathcal{Z}\{h(k)\} = \sum_{k=-\infty}^{\infty} h'(k)z^{-k} + \sum_{k=-\infty}^{\infty} h''(k)z^{-k} \gamma
 \]
- Convolution theorem valid for all cases:
 \[
 H(z)X(z) = \mathcal{Z}\{h(k) \ast x(k)\}
 \]
DSP structures resulting from subalgebras

- Structures determined by underlying algebra’s multiplication:
 - Generalised complex LTI system
 - Common complex LTI system
 - Double LTI system
 - Dual LTI system

- Impulse response: \(h(k) = h'(k) + h''(k) \gamma \)

- Generalised z-Transform:
 \[
 H(z) = \mathcal{Z}\{h(k)\} = \sum_{k=-\infty}^{\infty} h'(k)z^{-k} + \sum_{k=-\infty}^{\infty} h''(k)z^{-k} \gamma
 \]

- Convolution theorem valid for all cases:
 \[
 H(z)X(z) = \mathcal{Z}\{h(k) * x(k)\}
 \]
DSP structures resulting from subalgebras

- Structures determined by underlying algebra’s multiplication:
 - Generalised complex LTI system
 - Common complex LTI system
 - Double LTI system
 - Dual LTI system

- Impulse response: \(h(k) = h'(k) + h''(k) \gamma \)

- Generalised z-Transform:
 \[
 H(z) = \mathcal{Z}\{h(k)\} = \sum_{k=-\infty}^{\infty} h'(k)z^{-k} + \sum_{k=-\infty}^{\infty} h''(k)z^{-k}\gamma
 \]

- Convolution theorem valid for all cases:
 \[
 H(z)X(z) = \mathcal{Z}\{h(k) \ast x(k)\}
 \]
Zero divisors in double transfer functions

- Let the double transfer function $H(z)$ have a zero divisor value at the distinct frequency z_e:
 \[N[H(z_e)] = 0, \text{ e.g. } H''(z_e) = H'(z_e) = H(z_e) \]
Zero divisors in double transfer functions

- Let the double transfer function $H(z)$ have a zero divisor value at the distinct frequency z_e:
 \[N[H(z_e)] = 0, \text{ e.g. } H''(z_e) = H'(z_e) = H(z_e) \]
Let the double transfer function $H(z)$ have a zero divisor value at the distinct frequency z_e: $N[H(z_e)] = 0$, e.g. $H''(z_e) = H'(z_e) = H(z_e)$

Double LTI system: \Rightarrow Information loss

Common complex LTI system: \Rightarrow no information loss
Zero divisors in dual transfer functions

- Let the dual transfer function $H(z)$ have a zero divisor value at the distinct frequency z_e:
 $N[H(z_e)] = 0, \ H'(z_e) = 0$

Dual LTI system:

Common complex LTI system:
Let the dual transfer function $H(z)$ have a zero divisor value at the distinct frequency z_e:

$$N[H(z_e)] = 0, \quad H'(z_e) = 0$$

Dual LTI system:

⇒ Information loss

Common complex LTI system:

⇒ no information loss
Processing of real signals with double system (1/2)

- No meaningful double signal known
- Processing of real input signal with double-valued non-recursive (FIR) system:

 ![Diagram showing processing of real signals with double system](image)

 - System is reduced to 2 used subsystems
• Cascaded double-valued FIR systems
 ⇒ From second stage on: Full usage of structure
• Double-valued IIR systems
 ⇒ Full usage of structure

Full usage of structure:
• 4 real subsystems involved in the entire transfer functions
• Alternative representation (due to Peirce decomposition):
 4 real subsystems with the computational load of 2 real subsystems
Processing chain exploiting Peirce decomposition

- Processing chain employing alternative representation:

- System $\tilde{H}(z)$ processing orthogonal components
- Doubling of real subsystems’ degree
- Only 2 independent subsystems, operating in parallel: Half expenditure
- Structure similar to common coupled (allpass) structures
Summary

- Double numbers (subalgebra):
 - Comprehensible example for algebra comprising idempotents
 - Peirce decomposition \Rightarrow Efficient computation
- Dual numbers (subalgebra):
 - Comprehensible example for algebra comprising nilpotents
- Zero divisors (both idempotents and nilpotents) in transfer functions are singularities, comparable to zeros
- Processing of real signals feasible:
 - Dual numbers LTI systems far from being recommended as a self-contained system class
 - Double number LTI systems more promising, due to efficiency
Dual number LTI system of first order

Transfer function:
\[H(z) = \frac{b_0 + b_1 z^{-1}}{1 + a_1 z^{-1}} \]

- Coefficients \(a_1, b_0, b_1 \) are dual numbers
- Transfer function of first subsystem:
\[
H'(z) = \frac{b'_0 + \left[b'_1 + a'_1 b'_0 \right] z^{-1} + a'_1 b'_1 z^{-2}}{1 + 2 a'_1 z^{-1} + a'^2_1 z^{-2}}
\]
- Transfer function of second subsystem:
\[
H''(z) = \frac{b''_0 + \left[b''_1 + a''_1 b''_0 - a''_1 b'_0 \right] z^{-1} + \left[a'_1 b''_1 - a''_1 b'_1 \right] z^{-2}}{1 + 2 a'_1 z^{-1} + a'^2_1 z^{-2}}
\]